If $\frac{\pi }{2} < \alpha < \frac{3}{2}\pi $ , then the modulus and argument of $(1 + cos\, 2\alpha ) + i\, sin\, 2\alpha $ is respectively
$2\, cos\alpha ,\, \alpha $
$-2\, cos\alpha ,\, \alpha $
$-2\, cos\alpha ,\, \alpha - \pi $
None of these
The product of two complex numbers each of unit modulus is also a complex number, of
Number of complex numbers $z$ such that $\left| z \right| + z - 3\bar z = 0$ is equal to
If $z = x + iy$ satisfies $|z|-2=0$ and $|z-i|-|z+5 i|=0$, then
The complex numbers $sin\ x + i\ cos\ 2x$ and $cos\ x\ -\ i\ sin\ 2x$ are conjugate to each other, for
The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is